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Abstract

We show that the computational complexity of the isomorphism
testing of orthomodular lattices is polynomially equivalent to the graph
isomorphism testing.

An isomorphism testing problem for a class L of structures (L–Iso) is to
determine the exact computational complexity of the following question:

INSTANCE: Two finite structures from L.

QUESTION: Is there an isomorphism between them ?

Isomorphism testing problem for graphs, G–Iso, is one of the most exciting
algorithmic problem in the complexity theory. This is because it is one of
the few naturally arising problems that are suspected to be of intermediate
complexity: It is in the class NP, but neither it is proved to be NP-complete
nor a polynomial time algorithm for it is known.

For the discussion on the isomorphism testing problem for algebras we
refer the reader to the previous papers of the authors [3, 4]. In particular,
in [3], a polynomial time algorithm for isomorphism testing in any directly
representable variety was described. A variety is directly representable if it
has only finitely many directly indecomposable algebras. In general such a
variety splits into a product of two subvarieties – an affine variety over a
ring of finite representation type and a semisimple arithmetical variety. A
variety is semisimple if each its subdirectly irreducible algebra is simple, i.e.,
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has only two congruences. A natural generalization of semisimplicity is con-
gruence linearity, that is the assumption that each subdirectly irreducible
algebra has a chain as its congruence lattice. Using a completely different
technique, it was shown in [2] that for finitely generated arithmetical vari-
eties the assumption of semisimplicity can be relaxed to congruence linearity
and still the isomorphism testing problem in such varieties is solvable in a
polynomial time. A natural question to ask is how these assumptions can be
further relaxed.

In this paper we show that requiring that the variety is finitely generated
is essential. Indeed, we consider the variety generated by the class K of
all orthomodular lattices of height at most 3 i.e., OML3 = HSP (K). We
prove that this variety is semisimple (and therefore congruence linear) and
arithmetical (Lemma 3), but the isomorphism testing for the algebras in
OML3 is as hard as the one for arbitrary graphs (Theorem 5). In view of
the result of [2] it suggests that the variety OML3 is not finitely generated.
However, since it may happen that G–Iso ∈ PTIME, we give a direct prove
of the fact that OML3 is not finitely generated (Lemma 4).

An inspiration for considering orthomodular lattices as a realm in which
a semisimple arithmetical variety with complex isomorphism testing could
be found is taken from the work of M.Sherif [8].

Definition 1 By an ortholattice we mean an algebra (L,∨,∧,′ , 0, 1) of the
type 〈2, 2, 1, 0, 0〉 that satisfy:

• (L,∨,∧, 0, 1) is a bounded lattice,

• x ∧ x′ = 0 and x ∨ x′ = 1,

• (x ∧ y)′ = x′ ∨ y′ and (x ∨ y)′ = x′ ∧ y′’

• (x′)′ = x.

If additionally L satisfies

• x ≤ y implies x ∨ (x′ ∧ y) = y

then L is called an orthomodular lattice.

A system (L,≤,′ ) is an orthoposet if (L,≤) is a partially ordered set
with the least element 0 and the largest element 1, and the following holds:
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• x ≤ y implies y′ ≤ x′,

• (x′)′ = x,

• x ∧ x′ = 0 and x ∨ x′ = 1.

Orthomodular lattices generalize Boolean algebras and are commonly
used as a natural semantics for quantum logic. We refer to the excellent
monograph [5] for basic facts and the arithmetic of orthomodular lattices.
In particular we use Greechie diagrams and construction to glue Boolean
algebras into orthomodular lattices.

We say that a family B of finite boolean algebras is almost disjoint, if
two different Boolean algebras A, B ∈ B intersect almost trivially, i.e., either
A ∩ B = {0, 1} where 0A = 0 = 0B, 1A = 1 = 1B, or A ∩ B = {0, 1, x, x′}
where x is an atom both in A and in B and x′A = x′ = x′B.

For an almost disjoint family B of Boolean algebras one can define a
partial order on the join

⋃B by putting:

a ≤ b iff ∃B ∈ B (a, b ∈ B & a ≤B b).

Moreover one can define a unary operation ′ on
⋃B, so that (

⋃B,≤,′ ) forms
an orthoposet.

A family B of Boolean algebras is said to contain a loop of length n, if
there are B0, . . . , Bn−1, in B such that

|Bi ∩Bi+1| = 4 (mod n),
Bi ∩Bj = {0, 1} for j 6= i− 1, i + 1 (mod n),

B0 ∩B1 ∩B2 = {0, 1} if n = 3.

Lemma 2 (Greechie Loop Lemma [5]) For an almost disjoint family B
of Boolean algebras, the orthoposet (

⋃B,≤,′ ) is a reduct of an (unique) or-
thomodular lattice if and only if algebras in B contain no loops of length 3 or
4.

Using Loop Lemma one can present orthomodular lattices that are joins
of Boolean algebras with the help of so-called Greechie diagrams. Every finite
Boolean algebra is determined by the number of its atoms, and therefore in
Griechie diagram is drawn as a line containing dots which symbolize the
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atoms. An orthomodular lattice that is a join of an almost disjoint family B
of Boolean algebras can be then drawn as a set of segments – one for each
algebra. By the fact that B is almost disjoint we know that two segments
have at most one point in common.

For example the diagram

t tt
represents the Boolean algebra with 3 atoms, i.e., 8 elements, while

t tt
t
t

is the orthomodular lattice which is a sum of two Boolean algebras with a
common atom, that is the lattice
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In particular, if all Boolean algebras in B have 3 atoms then the orthomodular
lattice

⋃B is of hight 3, i.e., belongs to OML3.

Now we are ready to prove the following

Lemma 3 The variety OML3 is semisimple arithmetical.
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Proof: The variety of orthomodular lattices is congruence distributive
because every lattice is congruence distributive [7, Theorem 2.50]. Moreover,
one can easily check [5, Exercise 4, page 86] that the term

p(u, v, w) = (u ∨ ((v ∨ w) ∧ v′)) ∧ (w ∨ ((u ∨ v) ∧ v′))

satisfies the identities p(x, x, y) = y = p(y, x, x), i.e., is a Mal’tsev term for
orthomodular lattices so that OML3 is congruence permutable, and there-
fore arithmetical.

To show that the variety OML3 = HSP (K) is congruence linear, first
note that, by Jónsson Lemma all its subdirectly irreducibles are in HSPU(K).
Obviously all lattices in K are of hight at most 3, and this property can be
expressed by a universal first order sentence. Such sentences are obviously
preserved by ultraproducts and subalgebras, so that all lattices in SPU(K)
are of hight at most 3. Moreover, homomorphism can only collapse points
in a chain. Therefore all algebras in HSPU(K), and therefore all subdirectly
irreducible algebras in OML3 are of hight at most 3. On the other hand [5,
Theorem 9, page 79] tells us that an orthomodular lattice L without infinite
chains is subdirectly irreducible if and only if L is simple. Therefore all
subdirectly irreducibles of OML3 are simple and OML3 is semisimple.

Lemma 4 The variety OML3 is not finitely generated.

Proof: Since the variety OML3 is congruence distributive it is enough
to exhibit infinitely many subdirectly irreducible algebras in it. Obviously
all of the algebras from the next picture are in OML3:

ssssss
s ss ssssss

s ss
ss

ssssss
s ss

ss ss . . .,, ,

By [5, Theorem 10, page 79] we know that the congruence lattice of an
orthomodular lattice L with no infinite chains is isomorphic to the center of
L, i.e., the sublattice C(L) = {x ∈ L : x = (x ∧ y) ∨ (x ∧ y′) for any y ∈
L}. Now, let L be one of the orthomodular lattices from the above picture,
i.e., L is a union of at least 4 Boolean algebras B1, . . . , B` of size 8. Let
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x ∈ L − {0, 1} belongs to a summand Bi. Since ` ≥ 4 then there is j such
that Bj ∩ Bi = {0, 1}. Taking any y ∈ Bj − {0, 1} we have x ∧ y = 0 and
x∧ y′ = 0, a witness for x 6∈ C(L). Thus C(L) = {0, 1} and therefore all the
lattices with the above Greechie diagrams are simple.

This infinite sequence of subdirectly irreducibles shows that OML3 is
not finitely generated, see [1, Corollary 6.10].

The next step is to show that the isomorphism problem for OML3 is
isomorphism complete, i.e., polynomial time equivalent to the isomorphism
problem for graphs.

Theorem 5 The isomorphism problem for the variety OML3 is isomor-
phism complete.

Proof: Our proof consists of 3 reductions. First we define two auxiliary
classes of finite graphs:

• G3 – the class of finite graphs with the vertex degree at least 3,

• C – the class of finite graphs that contain no cycles of size 3 or 4 and
in which each vertex has degree at least 2.

The 3 reductions are:

1. G–Iso to G3–Iso,

2. G3–Iso to C–Iso,

3. C–Iso to OML3–Iso.

Let G be a graph with n vertices. Pick 3 pairwise disjoint complete graphs
G1, G2, G3 with n + 2 vertices each and such G has common vertex with
neither of them. Then, for each i = 1, 2, 3 pick and fix a vertex gi ∈ Gi. Define
G∗ to be the (disjoint) sum of the graphs G, G1, G2, G3 with all additional
edges of the form (g, gi), where g ∈ G and i = 1, 2, 3.

The vertices of G can be recovered from G∗ as the ones that do not belong
to any clique of size n + 2. Now, since G is an induced subgraph of G∗, it
is easy to see that for any graphs G1, G2 we have G1

∼= G2 iff G∗
1
∼= G∗

2.
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Obviously the construction of G∗ from G is polynomial time, so that the
reduction (1) is done.

For our second reduction we start with a graph G = (V, E) in G3. We
treat edges of G as two element subsets of V and assume that V ∩ E = ∅.
We form a new graph G′ = (V ′, E ′) by putting

V ′ = V ∪ E,

E ′ = {{x, e} : x ∈ e ∈ E}.

Obviously, G′ is construable from g in a polynomial time and if G ∈ G3

then G′ is in C. Moreover, if G1, G2 ∈ G3 and G1
∼= G2 then G′

1
∼= G′

2. To
show that also G′

1
∼= G′

2 implies G1
∼= G2 it suffices to show that G can be

recovered from G′ e.g. by first order formulas. Consider the following ones

V ER(x) ≡ x has degree at least 3
EDGE(x, y) ≡ V ER(x) & V ER(y) & x 6= y & ∃z (xE ′z & yE ′z),

and note that the graph G ∈ G3 is isomorphic to the graph determined by
the pair (V ER, EDGE) in G′.

Our final step is a polynomial time reduction from C–Iso to OML3–Iso.
Our encoding is modelled after the one of [8].

Let G = (V, E) be a graph from C and let V and E be disjoint. For any
element x ∈ V ∪ E define a new element x′. Additionally let 0 and 1 be
totally new elements. Now define the family BG = {Be : e ∈ E} of Boolean
algebras where:

Be = {0, 1, p, p′, q, q′, e, e′}

for e = {p, q} ∈ E.

The Boolean structure of Be is determined by taking 0 as the least ele-
ment, p, q, e as the atoms and ′ for complement. The family BG is almost
disjoint. Since the graphs from C do not have 3- or 4-cycles, BG has no loops
of length 3 or 4. Now using Loop Lemma 2 we get the orthomodular lattice
B(G) =

⋃BG. Since |B(G)| ∈ O(|V |2) we can obtain B(G) from G in a
polynomial time.
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Again if G1, G2 ∈ C are isomprphic then so are B(G1) and B(G2) Now
let us consider the following formulas in the language of ortholattices:

AT (x) ≡ x is an atom
V ER(x) ≡ AT (x) & there are at least 5 elements above x

EDGE(x) ≡ AT (x) & ¬V ER(x)

E(x, y) ≡ AT (x) & AT (y) & ∃u (EDGE(u) & (x ∨ y = u′))

One can easily see that the pair (V ER, E) determines in B(G) a graph
isomorphic to G. Therefore for any G1, G2 ∈ C with B(G1) ∼= B(G2) we have
G1

∼= G2, as required by the reduction (3).

As an easy corollary we get

Corollary 6 The isomorphism problem for the variety of all orthomodular
lattices is isomorphism complete.
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